Table for Third-Degree Spline Interpolation With Equally Spaced Arguments*

By T. N. E. Greville

Abstract

A table is given to facilitate the calculation of the parameters of the interpolating third-degree natural spline function for n given data points ($n>2$) with equally spaced abscissas. The use of the table is described and the correctness of the algorithm is demonstrated.

1. Introduction. Given a set of n real numbers $x_{1}<x_{2}<\cdots<x_{n}$ called "knots," a spline function of degree m having the knots x_{j} is defined to be a function $S(x)$ satisfying the following two conditions:
(1) In each interval $\left(x_{j}, x_{j+1}\right)\left(j=0,1, \cdots, n ; x_{0}=-\infty, x_{n+1}=\infty\right), S(x)$ is given by some polynomial of degree m (or less).
(2) The polynomial arcs which represent the function in successive intervals join smoothly in the sense that $S(x)$ and its derivatives of order $1,2, \cdots, m-1$ are continuous over $(-\infty, \infty)$.

A spline function of odd degree $2 k-1$ is called a "natural" spline function if it satisfies the further condition:
(3) In each of the two intervals $\left(-\infty, x_{1}\right)$ and $\left(x_{n}, \infty\right) S(x)$ is represented by a polynomial of degree $k-1$ or less (in general, not the same polynomial in the two intervals).

It is well known [1] that given any set of n data points (x_{j}, y_{j}) with distinct abscissas, and an integer $k \leqq n$, there is a unique natural spline function $s(x)$ of degree $2 k-1$, having its knots limited to the abscissas x_{j}, that also interpolates the given data points, in the sense that $s\left(x_{j}\right)=y_{j}(j=1,2, \cdots, n)$. Moreover, in the class of continuous functions $f(x)$ with continuous derivatives of order $1,2, \cdots$, k on $(-\infty, \infty)$, this natural spline interpolating function is the "smoothest" interpolating function for the given data points, in the sense that the integral

$$
\int_{a}^{b}[f(x)]^{2} d x
$$

(for any a, b such that $a \leqq x_{1}$ and $b \geqq x_{n}$) is smallest.
Third-degree spline functions (i.e., $k=2$) have been much more widely used than those of any other degree, and an algorithm is given in [1] for obtaining the third-degree interpolating natural spline function for any set of (2 or more) given data points with distinct abscissas. This algorithm involves the solution of an $(n-2) \times(n-2)$ tridiagonal system of linear equations.

[^0]If the abscissas of the data points are equally spaced, substantial simplification is possible, and the parameters of the third-degree interpolating natural spline function can be obtained explicitly, by the use of the table contained in this report, without the necessity of solving a system of equations.
2. Use of the Table. It is assumed that suitable changes of origin and scale have been made, if necessary, so that $x_{j}=j(j=1,2, \cdots, n)$. On this assumption $s(x)$ can be expressed [1] in the form

$$
\begin{equation*}
s(x)=s(1)+(x-1) d+\sum_{j=1}^{n} c_{j}(x-j)_{+}^{3} \tag{2.1}
\end{equation*}
$$

where the truncated power function $z_{+}{ }^{3}$ is given by

$$
\begin{aligned}
z_{+}^{3} & =z^{3} & & (z \geqq 0) \\
& =0 & & (z<0) .
\end{aligned}
$$

The coefficients d and c_{j} are to be determined.
Table 1
Constants for Calculating Third-Degree Interpolating Natural Spline Function for Equally Spaced Arguments

j	α_{j}	β_{j}
2	1	1
3	-6	-4
4	24	15
5	-90	-56
6	336	209
7	-1254	-780
8	4680	2911
9	-17466	-10864
10	65184	40545
11	-2 43270	-151316
12	907896	564719
13	-3388314	-21 07560
14	12645360	7865521
15	-47193126	-29354524
16	176127144	109552575
17	-6573 15450	-4088 55776
18	2453134656	1525870529
19	-91552 23174	-56946 26340
20	34167758040	21252634831

The table can be continued by means of the following relations (the first of which does not hold for $j=3$):

$$
\begin{aligned}
\alpha_{j+1} & =-4 \alpha_{j}-\alpha_{j-1} \\
\beta_{j+1} & =-4 \beta_{j}-\beta_{j-1} \\
\alpha_{j} & =\beta_{j}-2 \beta_{j-1}+\beta_{j-2}
\end{aligned}
$$

Table 1 gives the values of integer constants α_{j} and β_{j} corresponding to each integer $j \geqq 2$. The coefficient d is given by

$$
\begin{equation*}
d=\left[\alpha_{2}\left(y_{n}-y_{1}\right)+\alpha_{3}\left(y_{n-1}-y_{1}\right)+\cdots+\alpha_{n}\left(y_{2}-y_{1}\right)\right] / \beta_{n} . \tag{2.2}
\end{equation*}
$$

In order to avoid very rapid accumulation of rounding error (which would otherwise be a serious problem if n is even moderately large), it is suggested that the division by β_{n} be postponed. Thus d would be retained in the form N / β_{n}, where N is calculated exactly, using integer or fixed-point arithmetic.

The quantities $\beta_{n} c_{j}(j=1,2, \cdots, n)$ are then obtained recursively by the formulas

$$
\begin{align*}
& \beta_{n} c_{1}=\beta_{n}\left(y_{2}-y_{1}\right)-N, \tag{2.3}\\
& \beta_{n} c_{j}=\beta_{n}\left(y_{j+1}-y_{1}\right)-j N-2^{3} \beta_{n} c_{j-1}-3^{3} \beta_{n} c_{j-2}-\cdots-j^{3} \beta_{n} c_{1} \tag{2.4}\\
& \\
& \quad(j=2,3, \cdots, n-1),
\end{align*}
$$

$$
\begin{equation*}
\beta_{n} c_{n}=-\beta_{n} c_{1}-\beta_{n} c_{2}-\cdots-\beta_{n} c_{n-1} \tag{2.5}
\end{equation*}
$$

again using exact calculation throughout. (The quantities $y_{j}-y_{1}$ must, of course, be actually multiplied by β_{n}.) Finally, N and the quantities $\beta_{n} c_{j}$ are divided by β_{n} to give the parameters d and c_{j} to the desired precision. It should be borne in mind that in the expression (2.1) the coefficients c_{j} (especially those with smaller indices) will sometimes be multiplied by large numbers, and may be needed to many decimal places.
3. Derivations and Proofs. Taking $x=k+1$ in (2.1), transposing certain terms, and noting that $s(k)=y_{k}$ for $k=1,2, \cdots, n$ gives at once

$$
c_{k}=y_{k+1}-y_{1}-k d-2^{3} c_{k-1}-3^{3} c_{k-2}-\cdots-k^{3} c_{1},
$$

from which (2.4) follows immediately. Similarly, taking $x=2$ gives (2.3).
Let $\phi(x)$ denote the infinite series

$$
\begin{equation*}
\phi(x)=1^{3}+2^{3} x+3^{3} x^{2}+\cdots, \tag{3.1}
\end{equation*}
$$

which converges in the interior of the unit circle. By actual multiplication

$$
(1-x)^{4} \phi(x)=1+4 x+x^{2},
$$

and therefore

$$
\begin{equation*}
\varphi(x)=\frac{1+4 x+x^{2}}{(1-x)^{4}} \tag{3.2}
\end{equation*}
$$

Further, let

$$
\begin{equation*}
\eta(x)=\sum_{j=2}^{\infty}[s(j)-s(1)] x^{j-2} . \tag{3.3}
\end{equation*}
$$

As $s(x)$ is a linear function for $x \geqq n$, this series also converges within the unit circle, as does the binomial expansion

$$
\begin{equation*}
(1-x)^{-2}=1+2 x+3 x^{2}+\cdots \tag{3.4}
\end{equation*}
$$

Finally, we denote by $C(x)$ the polynomial

$$
\begin{equation*}
C(x)=c_{1}+c_{2} x+\cdots+c_{n} x^{n-1} \tag{3.5}
\end{equation*}
$$

From (2.1), (3.1), (3.3), (3.4) and (3.5) we obtain the identity

$$
\begin{equation*}
\eta(x)=d(1-x)^{-2}+\phi(x) C(x) \tag{3.6}
\end{equation*}
$$

Now, let

$$
\begin{equation*}
\psi(x)=\frac{1}{1+4 x+x^{2}} \tag{3.7}
\end{equation*}
$$

Clearly its Maclaurin expansion

$$
\begin{equation*}
\psi(x)=\sum_{j=0}^{\infty} b_{j} x^{j}=1-4 x+15 x^{2}-\cdots \tag{3.8}
\end{equation*}
$$

converges in a neighborhood of the origin. Multiplying (3.6) by $(1-x)^{2} \psi(x)$ gives

$$
\begin{equation*}
(1-x)^{2} \psi(x) \eta(x)=d \psi(x)+(1-x)^{-2} C(x) \tag{3.9}
\end{equation*}
$$

where we have used (3.2) and (3.7). It is shown in [1] that the coefficients c_{j} satisfy the two conditions

$$
\begin{align*}
c_{1}+c_{2}+\cdots+c_{n} & =0 \tag{3.10}\\
c_{1}+2 c_{2}+\cdots+n c_{n} & =0 \tag{3.11}
\end{align*}
$$

Incidentally, (2.5) follows from (3.10).
Returning, however, to (3.9), we equate coefficients of x^{n-2} on both sides of that equation, noting that the coefficient of x^{n-2} in $(1-x)^{-2} C(x)$ is

$$
\begin{aligned}
(n-1) c_{1}+(n-2) c_{2} & +\cdots+2 c_{n-2}+c_{n-1} \\
& =n\left(c_{1}+c_{2}+\cdots+c_{n}\right)-\left(c_{1}+2 c_{2}+\cdots+n c_{n}\right)=0
\end{aligned}
$$

by (3.10) and (3.11). Further, let

$$
\begin{equation*}
(1-x)^{2} \psi(x)=\sum_{j=0}^{\infty} a_{j} x^{j} \tag{3.12}
\end{equation*}
$$

a series having the same region of convergence as that in (3.8). We obtain, therefore,

$$
\begin{equation*}
a_{0}\left(y_{n}-y_{1}\right)+a_{1}\left(y_{n-1}-y_{1}\right)+\cdots+a_{n-2}\left(y_{2}-y_{1}\right)=d b_{n-2} \tag{3.13}
\end{equation*}
$$

Finally, we redesignate the coefficients a_{j} and b_{j} as α_{j} and β_{j}, shifting the indices (for notational convenience in the use of Table 1) so that $\alpha_{j}=a_{j-2}$ and $\beta_{j}=b_{j-2}$. Making these substitutions in (3.13) at once gives (2.2). The recurrence relation for the quantities α_{j} follows from (3.7) and (3.12); that for the β_{j} from (3.7) and (3.8). The relation $\alpha_{j}=\beta_{j}-2 \beta_{j-1}+\beta_{j-2}$ is an immediate consequence of (3.8) and (3.12).
4. Illustrative Example. The values of j and y_{j} in Table 2, due to K. A. Innanen [2], represent ten points on a segment of a theoretical rotation curve of the galactic system. Here y_{j} is the circular velocity in the galactic plane in $\mathrm{km} / \mathrm{sec}$ at a distance of j kiloparsecs from the galactic center. Substituting in (2.2) the values of α_{j} from Table 1 and those of $y_{j}-y_{1}$ from Table 2 gives

$$
\begin{aligned}
d & =[1(-24.0)-6(-22.5)+24(-23.0)-\cdots+65184(-23.0)] / 40545 \\
& =-1005780 / 40545=-67052 / 2703=-24.8065
\end{aligned}
$$

Table 2

Illustrative Data

j	y_{j}	$y_{j}-y_{1}$	$2703 c_{j}$	c_{j}
1	244.0	0.0	4883.0	1.8065
2	221.0	-23.0	-2268.0	-0.8391
3	208.0	-36.0	-9849.0	-3.6437
4	208.0	-36.0	7876.5	2.9140
5	211.5	-32.5	-2736.0	-1.0122
6	216.0	-28.0	306.5	1.1349
7	219.0	-25.0	-1425.0	-0.5272
8	221.0	-23.0	-70.5	-0.0261
9	221.5	-22.5	1707.0	0.6315
10	220.0	-24.0	-1185.5	-0.4386

Values of $2703 c_{j}$ are calculated exactly, using (2.3), (2.4), and (2.5). Finally, division by 2703 gives the values of c_{j}, shown in the last column of Table 2 to four decimal places. Thus, the third-degree interpolating natural spline function for these data is

$$
\begin{aligned}
244.0 & -24.8065(x-1)+1.8065(x-1)_{+}{ }^{3}-0.8391(x-2)_{+}{ }^{3} \\
& -3.6437(x-3)_{+}^{3}+2.9140(x-4)_{+}{ }^{3}-1.0122(x-5)_{+}{ }^{3} \\
& +1.1349(x-6)_{+}{ }^{3}-0.5272(x-7)_{+}{ }^{3}-0.0261(x-8)_{+}{ }^{3} \\
& +0.6315(x-9)_{+}{ }^{3}-0.4386(x-10)_{+}{ }^{3} .
\end{aligned}
$$

Mathematics Research Center, U. S. Army
University of Wisconsin
Madison, Wisconsin 53706

1. T. N. E. Greville, "Spline functions, interpolation, and numerical quadrature," in Mathematical Methods for Digital Computers, Vol. 2, A. Ralston and H. S. Wilf (Editors), Wiley, New York, 1967, Chapter 8. MR $35 \# 2516$.
2. K. A. Innanen, "An example of precise interpolation with a spline function," J. Computational Phys., v. 1, 1967, pp. 303-304.

[^0]: Received May 26, 1969.
 AMS Subject Classifications. Primary 6505, 6520; Secondary 4110, 4130.
 Key Words and Phrases. Natural cubic spline interpolation, smoothest interpolating function, generating functions.

 * Sponsored by the Mathematics Research Center, United States Army, Madison, Wisconsin, under contract No.: DA-31-124-ARO-D-462.

