Table for Third-Degree Spline Interpolation With Equally Spaced Arguments*

By T. N. E. Greville

Abstract. A table is given to facilitate the calculation of the parameters of the interpolating third-degree natural spline function for n given data points (n > 2) with equally spaced abscissas. The use of the table is described and the correctness of the algorithm is demonstrated.

1. Introduction. Given a set of n real numbers $x_1 < x_2 < \cdots < x_n$ called "knots," a spline function of degree m having the knots x_j is defined to be a function S(x) satisfying the following two conditions:

(1) In each interval (x_j, x_{j+1}) $(j = 0, 1, \dots, n; x_0 = -\infty, x_{n+1} = \infty)$, S(x) is given by some polynomial of degree m (or less).

(2) The polynomial arcs which represent the function in successive intervals join smoothly in the sense that S(x) and its derivatives of order 1, 2, \cdots , m - 1 are continuous over $(-\infty, \infty)$.

A spline function of odd degree 2k - 1 is called a "natural" spline function if it satisfies the further condition:

(3) In each of the two intervals $(-\infty, x_1)$ and (x_n, ∞) S(x) is represented by a polynomial of degree k - 1 or less (in general, not the same polynomial in the two intervals).

It is well known [1] that given any set of n data points (x_j, y_j) with distinct abscissas, and an integer $k \leq n$, there is a unique natural spline function s(x) of degree 2k - 1, having its knots limited to the abscissas x_j , that also interpolates the given data points, in the sense that $s(x_j) = y_j$ $(j = 1, 2, \dots, n)$. Moreover, in the class of continuous functions f(x) with continuous derivatives of order 1, 2, \dots , k on $(-\infty, \infty)$, this natural spline interpolating function is the "smoothest" interpolating function for the given data points, in the sense that the integral

$$\int_{a}^{b} \left[f(x)\right]^{2} dx$$

(for any a, b such that $a \leq x_1$ and $b \geq x_n$) is smallest.

Third-degree spline functions (i.e., k = 2) have been much more widely used than those of any other degree, and an algorithm is given in [1] for obtaining the third-degree interpolating natural spline function for any set of (2 or more) given data points with distinct abscissas. This algorithm involves the solution of an $(n - 2) \times (n - 2)$ tridiagonal system of linear equations.

Received May 26, 1969.

AMS Subject Classifications. Primary 6505, 6520; Secondary 4110, 4130.

Key Words and Phrases. Natural cubic spline interpolation, smoothest interpolating function, generating functions.

^{*} Sponsored by the Mathematics Research Center, United States Army, Madison, Wisconsin, under contract No.: DA-31-124-ARO-D-462.

If the abscissas of the data points are equally spaced, substantial simplification is possible, and the parameters of the third-degree interpolating natural spline function can be obtained explicitly, by the use of the table contained in this report, without the necessity of solving a system of equations.

2. Use of the Table. It is assumed that suitable changes of origin and scale have been made, if necessary, so that $x_j = j$ $(j = 1, 2, \dots, n)$. On this assumption s(x) can be expressed [1] in the form

(2.1)
$$s(x) = s(1) + (x - 1)d + \sum_{j=1}^{n} c_j (x - j)_{+}^{3},$$

where the truncated power function z_{+}^{3} is given by

$$z_{+}^{3} = z^{3}$$
 $(z \ge 0)$
= 0 $(z < 0)$

The coefficients d and c_j are to be determined.

TABLE 1

Constants for	Calculating Third-Degree Interpolating
Natural Spline	Function for Equally Spaced Arguments

j	α_j	eta_j
2	1	1
$2 \\ 3$	-6	-4
$\frac{4}{5}$	24	15
5	-90	-56
6	336	209
7	-1254	-780
8	4680	2911
9	-17466	-10864
10	65184	40545
11	-2 43270	-1 51316
12	9 07896	5 64719
13	-33 88314	-21 07560
14	$126 \ 45360$	78 65521
15	-471 93126	-293 54524
16	$1761 \ 27144$	$1095 \ 52575$
17	-6573 15450	-4088 55776
18	24531 34656	15258 70529
19	-91552 23174	-56946 26340
20	$3 \ 41677 \ 58040$	$2 \ 12526 \ 34831$

The table can be continued by means of the following relations (the first of which does not hold for j = 3):

$$\begin{array}{l} \alpha_{j+1} = -4\alpha_{j} - \alpha_{j-1} \\ \beta_{j+1} = -4\beta_{j} - \beta_{j-1} \\ \alpha_{j} = \beta_{j} - 2\beta_{j-1} + \beta_{j-2} \end{array}$$

Table 1 gives the values of integer constants α_j and β_j corresponding to each integer $j \ge 2$. The coefficient d is given by

(2.2)
$$d = [\alpha_2(y_n - y_1) + \alpha_3(y_{n-1} - y_1) + \cdots + \alpha_n(y_2 - y_1)]/\beta_n .$$

In order to avoid very rapid accumulation of rounding error (which would otherwise be a serious problem if n is even moderately large), it is suggested that the division by β_n be postponed. Thus d would be retained in the form N/β_n , where N is calculated exactly, using integer or fixed-point arithmetic.

The quantities $\beta_n c_j$ $(j = 1, 2, \dots, n)$ are then obtained recursively by the formulas

(2.3)
$$\beta_n c_1 = \beta_n (y_2 - y_1) - N$$
,

(2.4)
$$\beta_n c_j = \beta_n (y_{j+1} - y_1) - jN - 2^3 \beta_n c_{j-1} - 3^3 \beta_n c_{j-2} - \dots - j^3 \beta_n c_1 (j = 2, 3, \dots, n-1),$$

$$(2.5) \qquad \beta_n c_n = -\beta_n c_1 - \beta_n c_2 - \cdots - \beta_n c_{n-1},$$

again using exact calculation throughout. (The quantities $y_j - y_1$ must, of course, be actually multiplied by β_n .) Finally, N and the quantities $\beta_n c_j$ are divided by β_n to give the parameters d and c_j to the desired precision. It should be borne in mind that in the expression (2.1) the coefficients c_j (especially those with smaller indices) will sometimes be multiplied by large numbers, and may be needed to many decimal places.

3. Derivations and Proofs. Taking x = k + 1 in (2.1), transposing certain terms, and noting that $s(k) = y_k$ for $k = 1, 2, \dots, n$ gives at once

$$c_k = y_{k+1} - y_1 - kd - 2^3 c_{k-1} - 3^3 c_{k-2} - \cdots - k^3 c_1$$

from which (2.4) follows immediately. Similarly, taking x = 2 gives (2.3).

Let $\phi(x)$ denote the infinite series

(3.1)
$$\phi(x) = 1^3 + 2^3 x + 3^3 x^2 + \cdots,$$

which converges in the interior of the unit circle. By actual multiplication

$$(1 - x)^{4}\phi(x) = 1 + 4x + x^{2},$$

and therefore

(3.2)
$$\varphi(x) = \frac{1 + 4x + x^2}{(1 - x)^4}$$

Further, let

(3.3)
$$\eta(x) = \sum_{j=2}^{\infty} [s(j) - s(1)] x^{j-2}.$$

As s(x) is a linear function for $x \ge n$, this series also converges within the unit circle, as does the binomial expansion

(3.4)
$$(1-x)^{-2} = 1 + 2x + 3x^2 + \cdots$$

Finally, we denote by C(x) the polynomial

(3.5)
$$C(x) = c_1 + c_2 x + \cdots + c_n x^{n-1}.$$

 $\eta(x) = d(1-x)^{-2} + \phi(x)C(x) .$

From (2.1), (3.1), (3.3), (3.4) and (3.5) we obtain the identity

(3.6)

Now, let

(3.7)
$$\psi(x) = \frac{1}{1 + 4x + x^2}$$

Clearly its Maclaurin expansion

(3.8)
$$\psi(x) = \sum_{j=0}^{\infty} b_j x^j = 1 - 4x + 15x^2 - \cdots$$

converges in a neighborhood of the origin. Multiplying (3.6) by $(1-x)^2 \psi(x)$ gives

(3.9)
$$(1-x)^2 \psi(x)\eta(x) = d\psi(x) + (1-x)^{-2}C(x)$$

where we have used (3.2) and (3.7). It is shown in [1] that the coefficients c_j satisfy the two conditions

(3.10) $c_1+c_2+\cdots+c_n=0$

$$(3.11) c_1 + 2c_2 + \cdots + nc_n = 0.$$

Incidentally, (2.5) follows from (3.10).

Returning, however, to (3.9), we equate coefficients of x^{n-2} on both sides of that equation, noting that the coefficient of x^{n-2} in $(1 - x)^{-2}C(x)$ is

$$(n-1)c_1 + (n-2)c_2 + \cdots + 2c_{n-2} + c_{n-1}$$

= $n(c_1 + c_2 + \cdots + c_n) - (c_1 + 2c_2 + \cdots + nc_n) = 0$,
by (3.10) and (3.11). Further, let

(3.12)
$$(1-x)^2 \psi(x) = \sum_{j=0}^{\infty} a_j x^j,$$

a series having the same region of convergence as that in (3.8). We obtain, therefore,

$$(3.13) a_0(y_n - y_1) + a_1(y_{n-1} - y_1) + \cdots + a_{n-2}(y_2 - y_1) = db_{n-2}.$$

Finally, we redesignate the coefficients a_j and b_j as α_j and β_j , shifting the indices (for notational convenience in the use of Table 1) so that $\alpha_j = a_{j-2}$ and $\beta_j = b_{j-2}$. Making these substitutions in (3.13) at once gives (2.2). The recurrence relation for the quantities α_j follows from (3.7) and (3.12); that for the β_j from (3.7) and (3.8). The relation $\alpha_j = \beta_j - 2\beta_{j-1} + \beta_{j-2}$ is an immediate consequence of (3.8) and (3.12).

4. Illustrative Example. The values of j and y_j in Table 2, due to K. A. Innanen [2], represent ten points on a segment of a theoretical rotation curve of the galactic system. Here y_j is the circular velocity in the galactic plane in km/sec at a distance of j kiloparsecs from the galactic center. Substituting in (2.2) the values of α_j from Table 1 and those of $y_j - y_1$ from Table 2 gives

$$d = [1(-24.0) - 6(-22.5) + 24(-23.0) - \dots + 65184(-23.0)]/40545$$

= -1005780/40545 = -67052/2703 = -24.8065.

Illustrative Data						
j	y_j	$y_j - y_1$	2703c _j	Cj		
1	244.0	0.0	4883.0	1.8065		
2	221.0	-23.0	-2268.0	-0.8391		
3	208.0	-36.0	-9849.0	-3.6437		
4	208.0	-36.0	7876.5	2.9140		
5	211.5	-32.5	-2736.0	-1.0122		
6	216.0	-28.0	3067.5	1.1349		
7	219.0	-25.0	-1425.0	-0.5272		
8	221.0	-23.0	-70.5	-0.0261		
9	221.5	-22.5	1707.0	0.6315		
10	220.0	-24.0	-1185.5	-0.4386		

TABLE 2

Values of $2703c_j$ are calculated exactly, using (2.3), (2.4), and (2.5). Finally, division by 2703 gives the values of c_{j} , shown in the last column of Table 2 to four decimal places. Thus, the third-degree interpolating natural spline function for these data is

$$244.0 - 24.8065(x - 1) + 1.8065(x - 1)_{+}^{3} - 0.8391(x - 2)_{+}^{3} - 3.6437(x - 3)_{+}^{3} + 2.9140(x - 4)_{+}^{3} - 1.0122(x - 5)_{+}^{3} + 1.1349(x - 6)_{+}^{3} - 0.5272(x - 7)_{+}^{3} - 0.0261(x - 8)_{+}^{3} + 0.6315(x - 9)_{+}^{3} - 0.4386(x - 10)_{+}^{3}.$$

Mathematics Research Center, U.S. Army University of Wisconsin Madison, Wisconsin 53706

1. T. N. E. GREVILLE, "Spline functions, interpolation, and numerical quadrature," in Mathe-matical Methods for Digital Computers, Vol. 2, A. Ralston and H. S. Wilf (Editors), Wiley, New York, 1967, Chapter 8. MR 35 #2516. 2. K. A. INNANEN, "An example of precise interpolation with a spline function," J. Computa-tional Phys., v. 1, 1967, pp. 303-304.