
Table for Third-Degree Spline Interpolation 
With Equally Spaced Arguments* 

By T. N. E. Greville 

Abstract. A table is given to facilitate the calculation of the parameters of the interpolat- 
ing third-degree natural spline function for n given data points (n > 2) with equally 
spaced abscissas. The use of the table is described and the correctness of the algorithm 
is demonstrated. 

1. Introduction. Given a set of n real numbers xi < x2 < ... < Xn called 
"knots," a spline function of degree m having the knots xj is defined to be a function 
S(x) satisfying the following two conditions: 

(1) In each interval (x;, x j+) (j = 0, 1, n;xo = - -x, x+l ?? ), S(x) is 
given by some polynomial of degree m (or less). 

(2) The polynomial arcs which represent the function in successive intervals 
join smoothly in the sense that S(x) and its derivatives of order 1, 2, * *n m-1 
are continuous over (- ao, oc). 

A spline function of odd degree 2k - 1 is called a "natural" spline function if it 
satisfies the further condition: 

(3) In each of the two intervals (- oo, xi) and (x,, co) S(x) is represented by a 
polynomial of degree k - 1 or less (in general, not the same polynomial in the two 
intervals). 

It is well known [1] that given any set of n data points (xj, yj) with distinct 
abscissas, and an integer k < n, there is a unique natural spline function s(x) of 
degree 2k - 1, having its knots limited to the abscissas xj, that also interpolates 
the given data points, in the sense that s(xj) = yj (j = 1, 2, **, n). Moreover, in 
the class of continuous functions f(x) with continuous derivatives of order 1, 2, , 
k on (- co, cc), this natural spline interpolating function is the "smoothest" 
interpolating function for the given data points, in the sense that the integral 

fb 

f [f(x)]2dx 

(for any a, b such that a < xi and b ? xn) is smallest. 
Third-degree spline functions (i.e., k = 2) have been much more widely used 

than those of any other degree, and an algorithm is given in [1] for obtaining the 
third-degree interpolating natural spline function for any set of (2 or more) given 
data points with distinct abscissas. This algorithm involves the solution of an 
(n - 2) X (n - 2) tridiagonal system of linear equations. 
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If the abscissas of the data points are equally spaced, substantial simplification 
is possible, and the parameters of the third-degree interpolating natural spline 
function can be obtained explicitly, by the use of the table contained in this report, 
without the necessity of solving a system of equations. 

2. Use of the Table. It is assumed that suitable changes of origin and scale have 
been made, if necessary, so that xj = j (j = 1, 2, *, n). On this assumption s(x) 
can be expressed [1] in the form 

n 

(2.1) s(x) = s(1) + (x - 1)d + E cj(x -j)+3, 
ji- 

where the truncated power function z+3 is given by 

z+ =z (z _ 0) 

=0 (z < O). 

The coefficients d and c; are to be determined. 

TABLE 1 

Constants for Calculating Third-Degree Interpolating 
Natural Spline Function for Equally Spaced Arguments 

j aj Oi 

2 1 1 
3 -6 -4 
4 24 15 
5 -90 -56 
6 336 209 
7 -1254 -780 
8 4680 2911 
9 -17466 -10864 

10 65184 40545 
11 -2 43270 -1 51316 
12 9 07896 5 64719 
13 -33 88314 -21 07560 
14 126 45360 78 65521 
15 -471 93126 -293 54524 
16 1761 27144 1095 52575 
17 -6573 15450 -4088 55776 
18 24531 34656 15258 70529 
19 -91552 23174 -56946 26340 
20 3 41677 58040 2 12526 34831 

The table can be continued by means of the following relations (the first of which 
does not hold for j = 3): 

aj+i = -4aj - - j_ 
1j+1 = -4#j -j-j 

aj = hj- 2Sp + 1j-2 

Table 1 gives the values of integer constants aj and 13 corresponding to each 
integer j > 2. The coefficient d is given by 
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(2.2) d = [a2 (Yn - Y) + a3 (yn-l - Yj) + * * - + an (Y2 - Y1) ]//n 

In order to avoid very rapid accumulation of rounding error (which would otherwise 
be a serious problem if n is even moderately large), it is suggested that the division 
by 0,n be postponed. Thus d would be retained in the form NIOB, where N is calculated 
exactly, using integer or fixed-point arithmetic. 

The quantities ,f3cj (j = 1, 2, *, n) are then obtained recursively by the 
formulas 

(2.3) Once = /3n(Y2 - Y1) -N, 

(2.4) fAlCJi = On (Yj+1- Y) - jN -23 3ncj-1 - 33 nC_2 - - j3 3ncl 

(j=2,3,.,n-1), 

(2.5) InCn = -3nCl - IOnC2 - *- 3nCn-1 

again using exact calculation throughout. (The quantities yj -Y must, of course, 
be actually multiplied by on.) Finally, N and the quantities fncj are divided by f3 
to give the parameters d and c; to the desired precision. It should be borne in mind 
that in the expression (2.1) the coefficients cj (especially those with smaller indices) 
will sometimes be multiplied by large numbers, and may be needed to many decimal 
places. 

3. Derivations and Proofs. Taking x = k + 1 in (2.1), transposing certain terms, 
and noting that s(k) = Yk for k = 1, 2, * * *, n gives at once 

Ck = yk+1 -y - kd - 2 Ck1 - 3 Ck2- k c1, 

from which (2.4) follows immediately. Similarly, taking x = 2 gives (2.3). 
Let +(x) denote the infinite series 

(3.1) +(X) = 13 + 23X + 33X2 + 

which converges in the interior of the unit circle. By actual multiplication 

(1- x) 4(x) = 1 + 4x + x2, 

and therefore 

(3.2) (X) = 1+ 4 

Further, let 

00 

(3.3) fkx) = E [s(j) - S(1)]x2 . 
j=2 

As s(x) is a linear function for x > n, this series also converges within the unit 
circle, as does the binomial expansion 

(3.4) (1-x)-2 = 1 + 2x + 3X2 +. 

Finally, we denote by C(x) the polynomial 

(3.5) C (x) = c1 + c2x + + cnxn1 
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From (2.1), (3.1), (3.3), (3.4) and (3.5) we obtain the identity 

(3.6) q(x) = d(1 x)-2 + O(x)C(x) . 

Now, let 

(3 7) 1 
I 

-- 
=I + 4x +x 

Clearly its Maclaurin expansion 

(3.8) (x) =Ebjxj = 1-4x + 15X2- 
j=0 

converges in a neighborhood of the origin. Multiplying (3.6) by (1- x)2 V'(x) gives 

(3.9) (1- X)2(X)X(X) = dip(x) + (1 -x C(x) 
where we have used (3.2) and (3.7). It is shown in [1] that the coefficients cj satisfy 
the two conditions 

(3.10) cl + C2 + + C. = 0 

(3.11) cl + 2c2 + + nCn = 0 

Incidentally, (2.5) follows from (3.10). 
Returning, however, to (3.9), we equate coefficients of x-2 on both sides of that 

equation, noting that the coefficient of x8-2 in (1 - X)-2C(x) is 

(n - 1)cl + (n - 2)C2 + * * * + 2Cn-2 + Cn-1 

= n(cl + c2 + * + cn) -(cl + 2c2 + * + nCn) = 0, 

by (3.10) and (3.11). Further, let 
00 

(3.12) (1-x)29,6(x) = ajx 
j=O 

a series having the same region of convergence as that in (3.8). We obtain, therefore, 

(3.13) ao(yn - yi) + a,(yni - yi) + ... + an-2(y2 - Y) = dbn-2. 

Finally, we redesignate the coefficients aj and b1 as ao and 0j, shifting the indices 
(for notational convenience in the use of Table 1) so that aj = aj-2 and flj = bj2. 
Making these substitutions in (3.13) at once gives (2.2). The recurrence relation for 
the quantities ai follows from (3.7) and (3.12); that for the f3j from (3.7) and (3.8). 
The relation aj = Oj- 20j-1 + 1j-2 is an immediate consequence of (3.8) and 
(3.12). 

4. Illustrative Example. The values of j and yj in Table 2, due to K. A. Innanen 
[2], represent ten points on a segment of a theoretical rotation curve of the galactic 
system. Here yj is the circular velocity in the galactic plane in km/sec at a distance 
of j kiloparsecs from the galactic center. Substituting in (2.2) the values of ao from 
Table 1 and those of yj - yj from Table 2 gives 

d = [1(-24.0) - 6(-22.5) + 24(-23.0)- * * + 65184(-23.0)]/40545 

=- 1005780/40545 = -67052/2703 = -24.8065. 
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TABLE 2 
Illustrative Data 

j Yj Yj- y 2703cj cj 

1 244.0 0.0 4883.0 1.8065 
2 221.0 -23.0 -2268.0 -0.8391 
3 208.0 -36.0 -9849.0 -3.6437 
4 208.0 -36.0 7876.5 2.9140 
5 211.5 -32.5 -2736.0 -1.0122 
6 216.0 -28.0 3067.5 1.1349 
7 219.0 -25.0 -1425.0 -0.5272 
8 221.0 -23.0 -70.5 -0.0261 
9 221.5 -22.5 1707.0 0.6315 

10 220.0 -24.0 -1185.5 -0.4386 

Values of 2703cj are calculated exactly, using (2.3), (2.4), and (2.5). Finally, 
division by 2703 gives the values of c;, shown in the last column of Table 2 to four 
decimal places. Thus, the third-degree interpolating natural spline function for 
these data is 

244.0 - 24.8065(x - 1) + 1.8065(x - 1)+3 - 0.8391(x -2)+ 

- 3.6437(x - 3)+3 + 2.9140(x - 4)+3 - 1.0122(x - 5)+3 

+ 1.1349(x - 6)+3 - 0.5272(x - 7)+3 - 0.0261(x -8)+ 

+ 0.6315(x - 9)+3 - 0.4386(x - 10)+3. 
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